A 3.3 MJ, Rb⁺¹ Driver Design Based on an Integrated Systems Analysis

Wayne R. Meier, John J. Barnard Lawrence Livermore National Laboratory

Roger O. Bangerter E.O. Lawrence Berkeley National laboratory

13th International Symposium on Heavy Ion Fusion March 13-17, 2000 San Diego, CA

Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48

Driver cost varies by less than 10% for design point variations of 30% or more

Cost relative to reference point cost

Quad field at winding

Reference case:

T for fixed beam radius = 500 MeV Number of beams = 160 Initial pulse duration = 15 μ s Quad field at winding = 3.5 T Direct cost = \$0.7 B

Total spot size on target varies with the focus half angle of the beam

Spot radius (mm) vs. focus half angle (mrad)

Rb⁺ (A = 85 amu) Final focus length = 5.5 m 99% space charge neutralized Normalize emittance = 1 mm-mrad $\Delta V/V = 10^{-3}$ initially, 4.6x growth

A minimum of about 160 beams is needed to meet the spot size requirement

Spot radius (mm) vs. number of beams

Combined space charge and emittance contribution is compared to total.

- 1.7 mm goal

Transport unit costs (\$/J) decrease with increasing ion energy

Cost per unit beam energy (\$/J) vs. ion energy

The jump in \$/J at 0.9 GeV is due to continued transport of foot pulse beams while only adding energy to main pulse beams.

Electrostatic transport would be less expense up to an ion energy of ~ 3 MeV

Transport cost (\$/J) vs. ion energy

Because of the small benefit, the reference case design uses all magnetic transport.

Local core efficiency exceeds 60% for much of the accelerator

Core efficiency (%) vs. ion energy (GeV)

Assuming a pulsed power system efficiency of 75%, an auxiliary power load of 5 MWe (primarily for cryo-cooling), and 5 Hz operation gives:

Driver efficiency = 42%

The total mass of ferromagnetic material increases slightly with increasing initial pulse duration

Mass of core material (10⁶ kg) vs. initial pulse duration (ms)

The reference case design with τ_o = 15 μs , uses 1.6 x 10⁷ kg of ferromagnetic material

The peak core mass per meter (along accelerator) is higher for shorter initial pulse durations

Core mass per unit length (kg/m) vs. position along accelerator

A shorter initial pulse duration, τ_o , gives a higher peak kg/m but also results in a shorter accelerator. This is because we limit the maximum velocity tilt, hence the initial acceleration gradient increases with decreasing τ_o .

Inner radius of core is minimized by using quad field of 4-5 T

Inner radius of core (m) vs. quad field at winding (T) (shown at different points along accelerator)

While core radius is minimized with $B_q = 4 - 5$ T, the driver cost is minimized using B_q of ~ 3 T (see cost sensitivity graph).

___ 10 MeV

100 MeV

500 MeV

- Tmp = 1.44 GeV

Core inner radius decreases with increasing number of beams, especially at the low energy end

Inner radius of core (m) vs. number of beams

In terms of decreasing the core inner radius, there is little benefit to use more than ~ 100 beams.

Core inner radius decreases with increasing ion energy

Core inner radius (m) vs. ion energy (GeV)

With 160 beams, the core inner radius ranges from ~1 m at 2 MeV to ~ 0.6 m at 0.5 GeV.

Beyond 0.9 GeV (the foot pulse energy), the core radius drops to ~ 0.5 m since only main pulse beams continue to be accelerated.

- Pulse length
- Pulse duration x 10
- Current
- Beam radius
- Quad occupancy

Initial values:

Pulse length = 32 m Pulse duration = $15 \mu s$ Avg. beam radius = 2.0 cm Quad occupancy = 75%

Current is fraction of final current = 78 A per beam

- Pulse length decreases due to ion acceleration and bunch compression.
- Pulse duration reaches a minimum of 200 ns.
- Beam radius is reduced from 2.0 to 0.8 cm, then held fixed.
- Once beam radius is fixed. quad occupancy drops from 75% to $\sim 20\%$.

Half lattice period increases with increasing ion energy

Half lattice period (m) vs. ion energy

The half lattice period increases from 0.23 m to 1.45 m over the length of the accelerator.

Core axial packing fraction, acceleration gradient, and core radial build vs. ion energy

As the acceleration gradient approaches the assumed 2 MV/m limit, the core axial packing fraction decreases to 50%, and the core radial build increases to ~ 0.9 m.

Recent driver designs are much shorter than past designs

Early designs:

10 GeV Pb⁺, 1 MV/m maximum gradient → 10 km length

Heidelberg HIF Symposium:

4 GeV Pb⁺, 1 MV/m maximum gradient → 4 km length

Most recent design:

1.4 GeV Rb⁺, 2 MV/m maximum gradient
→1 km length

Conclusions

- The primary goal of our driver systems analyses is to find research areas with high payoff (e.g., target improvements, high acceleration gradients, core performance and cost, etc.)
- In this work, an integrated systems model has been used to investigate a driver design for HIF based on the closed-couple target design
- All magnetic transport is used with a maximun acceleration gradient of 2 MV/m giving a total accelerator length less than 1 km
- This 3.3 MJ, Rb⁺ driver has estimated direct capital cost of ~\$0.7 B assuming success in component cost reduction R&D
- Better models are needed for emittance growth in the accelerator and for the beam transport through the chamber both important for determining if the spot size requirement can be met

The estimated direct capital cost is \sim \$0.7 B

Subsystem	Direct Cost, \$M		
1. Injector			47
2. Magnetic Focus Section			363
2.1 Quad Transport		137	
Magnets	70		
Cyrostats	32		
Refrigeration	36		
2.2 Accelerator Modules		157	
Metglas	81		
Structures	49		
Insulators	27		
2.3 Accel. Power Supplies		32	
Pulsers (switches)	17		
Storage and PFN	15		
2.4 Vacuum systems		37	
3. Final Transport			65
3.1 Quad magnetic		6	
3.2 Dipole Magnetic		17	
3.3 Cryostat		12	
3.4 Refrigeration		17	
3.5 Vacuum System		14	
4. Final Focus Magnets			2
Driver Equipment Subtotal			477
Allowance for I&C			57
Allowance for Installation			160
Total Direct Cost			694

Key design parameters for reference case

Number of beams (Foot / Main / Total)	36 / 124 / 160
Initial pulse duration	15 µs
End radial compression of beam	500 MeV
Accelerator quadrupole field at winding	3.5 T
Final focus length	5.5 m
Beam focus half angle	6 mrad

Key parameters along accelerator

	Injector Exit	Foot Pulse	Main Pulse
Ion energy, GeV	0.002	0.90	1.44
Pulse duration, µs	15	0.20	0.20
Beta	0.007	0.15	0.19
Pulse length, m	32.0	9.1	11.3
Beam current, A	1.0	77	78
Beam radius (avg.), cm	1.96	0.77	0.77
Bore radius, cm	3.66	1.73	1.73
Winding radius, cm	4.52	2.40	2.40
Field gradient, T/m	78	146	146
Core inner radius, m	1.02	0.57	0.51
Core build, m	0.40	0.91	0.91
Quad Occupancy, %	75	45	20.5
Half lattice period, m	0.23	1.02	1.45
Accelerator gradient, MV/m	0.038	2.0	2.0
Distance from injector, km	0	0.64	0.91

Parameters at final focus magnet

	Foot Pulse	Main Pulse
Pulse duration, μs	30	8
Pulse length, m	1.35	0.45
Beam current, kA	0.52	1.95
Beam radius, cm	3.3	3.3
Bore radius, cm	5.9	5.9
Norm. emittance, mm-mrad	1.0	1.0
Focus half-angle, mrad	6	6